The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes.

نویسندگان

  • Rodger C Evans
  • Christopher S Campbell
چکیده

For 70 yr the leading hypothesis for the origin of the Maloideae has involved wide hybridization between ancestors of two other subfamilies. The basis of this hypothesis is that Maloideae have a base chromosome number of 17, whereas other Rosaceae are mostly x = 7, 8, or 9. To investigate this hypothesis we cloned and sequenced approximately 1.8 kilobases from the 5' portion of granule-bound starch synthase (GBSSI, or waxy) genes for 89 clones from 32 Rosaceae genera. Previous studies demonstrate the presence of two copies in all Rosaceae (GBSSI-1 and GBSSI-2) and four in Maloideae (GBSSI-1A, GBSSI-1B, GBSSI-2A, and GBSSI-2B). Parsimony and maximum likelihood analyses nest Gillenia, a genus of the southeastern United States with a base chromosome number of 9, within either Maloideae GBSSI-1 or GBSSI-2. Monophyly of Maloideae plus Gillenia is well supported by bootstrap values, loss of the sixth intron in all GBSSI-1 sequences, intron alignability between genera, and numerous nonmolecular characters. Our results falsify the wide-hybridization hypothesis and are consistent with a polyploid origin involving only members of a lineage that contained the ancestors of Gillenia. Under this hypothesis, the subfamily originated in North America, and the high Maloideae chromosome number arose via aneuploidy from x = 18.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The granule-bound starch synthase (GBSSI) gene in the Rosaceae: multiple loci and phylogenetic utility.

We sampled the 5' end of the granule-bound starch synthase gene (GBSSI or waxy) in Rosaceae, sequencing 108 clones from 18 species in 14 genera representing all four subfamilies (Amygdaloideae, Maloideae, Rosoideae, and Spiraeoideae), as well as four clones from Rhamnus catharticus (Rhamnaceae). This is the first phylogenetic study to use the 5' portion of this nuclear gene. Parsimony and maxim...

متن کامل

Population structure at the S-locus of Sorbus aucuparia L. (Rosaceae: Maloideae).

Low sequence divergence within functional alleles is predicted for the self-incompatibility locus because of strong negative frequency-dependent selection. Nevertheless, sequence variation within functional alleles is essential for current models of the evolution of new mating types. We genotyped the stylar self-incompatibility RNase of 20 Sorbus aucuparia from a population in the Pyrenees moun...

متن کامل

Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry

The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analy...

متن کامل

Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species

Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...

متن کامل

Ancient allopolyploid speciation in Geinae (Rosaceae): evidence from nuclear granule-bound starch synthase (GBSSI) gene sequences.

A nuclear low-copy gene phylogeny provides strong evidence for the hybrid origin of seven polyploid species in Geinae (Rosaceae). In a gene tree, alleles at homologous loci in an allopolyploid species are expected to be sisters to orthologues in the ancestral taxa rather than to each other. Alleles at a duplicated locus in an autopolyploid, however, are expected to be more closely related to ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of botany

دوره 89 9  شماره 

صفحات  -

تاریخ انتشار 2002